Semantic image inpainting with deep generative models RA Yeh, C Chen, T Yian Lim, AG Schwing, M Hasegawa-Johnson, MN Do Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 1181 | 2017 |
Efficient deep learning for stereo matching W Luo, AG Schwing, R Urtasun Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 830 | 2016 |
Real-time 3D imaging of Haines jumps in porous media flow S Berg, H Ott, SA Klapp, A Schwing, R Neiteler, N Brussee, A Makurat, ... Proceedings of the National Academy of Sciences 110 (10), 3755-3759, 2013 | 582 | 2013 |
Per-pixel classification is not all you need for semantic segmentation B Cheng, A Schwing, A Kirillov Advances in Neural Information Processing Systems 34, 17864-17875, 2021 | 445 | 2021 |
Convolutional image captioning J Aneja, A Deshpande, AG Schwing Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 362 | 2018 |
Masked-attention mask transformer for universal image segmentation B Cheng, I Misra, AG Schwing, A Kirillov, R Girdhar Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 355 | 2022 |
Fully connected deep structured networks AG Schwing, R Urtasun arXiv preprint arXiv:1503.02351, 2015 | 346 | 2015 |
Learning deep structured models LC Chen, A Schwing, A Yuille, R Urtasun International Conference on Machine Learning, 1785-1794, 2015 | 289 | 2015 |
Videomatch: Matching based video object segmentation YT Hu, JB Huang, AG Schwing Proceedings of the European conference on computer vision (ECCV), 54-70, 2018 | 249 | 2018 |
From connected pathway flow to ganglion dynamics M Rücker, S Berg, RT Armstrong, A Georgiadis, H Ott, A Schwing, ... Geophysical Research Letters 42 (10), 3888-3894, 2015 | 223 | 2015 |
Out of the box: Reasoning with graph convolution nets for factual visual question answering M Narasimhan, S Lazebnik, A Schwing Advances in neural information processing systems 31, 2018 | 208 | 2018 |
Learning to segment under various forms of weak supervision J Xu, AG Schwing, R Urtasun Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 204 | 2015 |
Generative modeling using the sliced wasserstein distance I Deshpande, Z Zhang, AG Schwing Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 191 | 2018 |
Maskrnn: Instance level video object segmentation YT Hu, JB Huang, A Schwing Advances in neural information processing systems 30, 2017 | 181 | 2017 |
Diverse and accurate image description using a variational auto-encoder with an additive gaussian encoding space L Wang, A Schwing, S Lazebnik Advances in Neural Information Processing Systems 30, 2017 | 178 | 2017 |
Monocular object instance segmentation and depth ordering with cnns Z Zhang, AG Schwing, S Fidler, R Urtasun Proceedings of the IEEE International Conference on Computer Vision, 2614-2622, 2015 | 174 | 2015 |
Instance-aware, context-focused, and memory-efficient weakly supervised object detection Z Ren, Z Yu, X Yang, MY Liu, YJ Lee, AG Schwing, J Kautz Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 160 | 2020 |
Creativity: Generating diverse questions using variational autoencoders U Jain, Z Zhang, AG Schwing Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 153 | 2017 |
Box in the box: Joint 3d layout and object reasoning from single images AG Schwing, S Fidler, M Pollefeys, R Urtasun Proceedings of the IEEE International Conference on Computer Vision, 353-360, 2013 | 151 | 2013 |
Efficient structured prediction for 3d indoor scene understanding AG Schwing, T Hazan, M Pollefeys, R Urtasun 2012 IEEE conference on computer vision and pattern recognition, 2815-2822, 2012 | 150 | 2012 |