Follow
Rama Venkatasubramanian
Rama Venkatasubramanian
Johns Hopkins University Applied Physics Lab
Verified email at jhuapl.edu
Title
Cited by
Cited by
Year
Thin-film thermoelectric devices with high room-temperature figures of merit
R Venkatasubramanian, E Silvola, T Colpitts, B O'quinn
Nature 413, 597-602, 2001
65002001
Thermoelectrics handbook: macro to nano
DM Rowe
CRC press, 2018
33042018
Thermal conductivity of Si–Ge superlattices
SM Lee, DG Cahill, R Venkatasubramanian
Applied physics letters 70 (22), 2957-2959, 1997
9391997
On-chip cooling by superlattice-based thin-film thermoelectrics
I Chowdhury, R Prasher, K Lofgreen, G Chrysler, S Narasimhan, ...
Nature nanotechnology 4 (4), 235-238, 2009
9032009
Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
R Venkatasubramanian
Physical Review B 61 (4), 3091, 2000
6702000
Thermal challenges in next-generation electronic systems
SV Garimella, AS Fleischer, JY Murthy, A Keshavarzi, R Prasher, C Patel, ...
IEEE Transactions on Components and Packaging Technologies 31 (4), 801-815, 2008
4622008
MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications
R Venkatasubramanian, T Colpitts, E Watko, M Lamvik, N El-Masry
Journal of crystal growth 170 (1-4), 817-821, 1997
3621997
Aspects of thin-film superlattice thermoelectric materials, devices, and applications
H Böttner, G Chen, R Venkatasubramanian
MRS bulletin 31 (3), 211-217, 2006
3372006
Thin-film thermoelectric device and fabrication method of same
R Venkatasubramanian
US Patent 6,300,150, 2001
2482001
Phonon-blocking, electron-transmitting low-dimensional structures
R Venkatasubramanian, E Siivola, T Colpitts, B O'quinn
US Patent 7,342,169, 2008
2222008
Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity
JC Caylor, K Coonley, J Stuart, T Colpitts, R Venkatasubramanian
Applied physics letters 87 (2), 023105, 2005
2122005
Thermal characterization of superlattices
MN Touzelbaev, P Zhou, R Venkatasubramanian, KE Goodson
Journal of Applied Physics 90 (2), 763-767, 2001
1982001
Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
R Venkatasubramanian, RG Alley, P Addepalli, AJ Reddy, EP Siivola, ...
US Patent 7,523,617, 2009
1672009
Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics
R Venkatasubramanian, T Colpitts, B O’Quinn, S Liu, N El-Masry, ...
Applied Physics Letters 75 (8), 1104-1106, 1999
1661999
Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials
SJ Poon, D Wu, S Zhu, W Xie, TM Tritt, P Thomas, R Venkatasubramanian
Journal of Materials Research 26 (22), 2795-2802, 2011
1592011
Thin-film thermoelectric cooling and heating devices for DNA genomic and proteomic chips, thermo-optical switching circuits, and IR tags
R Venkatasubramanian
US Patent 7,164,077, 2007
1222007
Thermoelectric generators for solar conversion and related systems and methods
R Venkatasubramanian
US Patent 7,638,705, 2009
1062009
Enhancement of Thermopower of TAGS‐85 High‐Performance Thermoelectric Material by Doping with the Rare Earth Dy
EM Levin, SL Bud'Ko, K Schmidt‐Rohr
Advanced Functional Materials 22 (13), 2766-2774, 2012
962012
Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors
C Watkins, B Shen, R Venkatasubramanian
ICT 2005. 24th International Conference on Thermoelectrics, 2005., 265-267, 2005
942005
Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition
H Cao, R Venkatasubramanian, C Liu, J Pierce, H Yang, M Zahid Hasan, ...
Applied Physics Letters 101 (16), 162104, 2012
912012
The system can't perform the operation now. Try again later.
Articles 1–20