Follow
Zhen ZHENG
Zhen ZHENG
Alibaba Group
Verified email at alibaba-inc.com - Homepage
Title
Cited by
Cited by
Year
DAPPLE: A pipelined data parallel approach for training large models
S Fan, Y Rong, C Meng, Z Cao, S Wang, Z Zheng, C Wu, G Long, J Yang, ...
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of …, 2021
402021
Refactoring and optimizing the community atmosphere model (CAM) on the sunway taihulight supercomputer
H Fu, J Liao, W Xue, L Wang, D Chen, L Gu, J Xu, N Ding, X Wang, C He, ...
SC'16: Proceedings of the International Conference for High Performance …, 2016
342016
Versapipe: a versatile programming framework for pipelined computing on GPU
Z Zheng, C Oh, J Zhai, X Shen, Y Yi, W Chen
2017 50th Annual IEEE/ACM International Symposium on Microarchitecture …, 2017
312017
Understanding and bridging the gaps in current GNN performance optimizations
K Huang, J Zhai, Z Zheng, Y Yi, X Shen
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of …, 2021
202021
Fusionstitching: boosting memory intensive computations for deep learning workloads
Z Zheng, P Zhao, G Long, F Zhu, K Zhu, W Zhao, L Diao, J Yang, W Lin
arXiv preprint arXiv:2009.10924, 2020
152020
Optimizing distributed training deployment in heterogeneous gpu clusters
X Yi, S Zhang, Z Luo, G Long, L Diao, C Wu, Z Zheng, J Yang, W Lin
Proceedings of the 16th International Conference on emerging Networking …, 2020
102020
HiWayLib: A software framework for enabling high performance communications for heterogeneous pipeline computations
Z Zheng, C Oh, J Zhai, X Shen, Y Yi, W Chen
Proceedings of the Twenty-Fourth International Conference on Architectural …, 2019
82019
AStitch: enabling a new multi-dimensional optimization space for memory-intensive ML training and inference on modern SIMT architectures
Z Zheng, X Yang, P Zhao, G Long, K Zhu, F Zhu, W Zhao, X Liu, J Yang, ...
Proceedings of the 27th ACM International Conference on Architectural …, 2022
72022
Exploring deep reuse in winograd CNN inference
R Wu, F Zhang, Z Zheng, X Du, X Shen
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of …, 2021
62021
GOPipe: a granularity-oblivious programming framework for pipelined stencil executions on GPU
C Oh, Z Zheng, X Shen, J Zhai, Y Yi
Proceedings of the ACM International Conference on Parallel Architectures …, 2020
62020
DISC: A dynamic shape compiler for machine learning workloads
K Zhu, WY Zhao, Z Zheng, TY Guo, PZ Zhao, JJ Bai, J Yang, XY Liu, ...
Proceedings of the 1st Workshop on Machine Learning and Systems, 89-95, 2021
52021
Auto-map: A DQN framework for exploring distributed execution plans for DNN workloads
S Wang, Y Rong, S Fan, Z Zheng, LS Diao, G Long, J Yang, X Liu, W Lin
arXiv preprint arXiv:2007.04069, 2020
52020
DREW: Efficient Winograd CNN Inference with Deep Reuse
R Wu, F Zhang, J Guan, Z Zheng, X Du, X Shen
Proceedings of the ACM Web Conference 2022, 1807-1816, 2022
42022
Whale: Scaling deep learning model training to the trillions
X Jia, L Jiang, A Wang, J Zhang, X Li, W Xiao, Y Li, Z Zheng, X Liu, W Lin
arXiv preprint arXiv:2011.09208, 2020
42020
Optimizing DNN Compilation for Distributed Training With Joint OP and Tensor Fusion
X Yi, S Zhang, L Diao, C Wu, Z Zheng, S Fan, S Wang, J Yang, W Lin
IEEE Transactions on Parallel and Distributed Systems 33 (12), 4694-4706, 2022
2022
Whale: Efficient Giant Model Training over Heterogeneous {GPUs}
X Jia, L Jiang, A Wang, W Xiao, Z Shi, J Zhang, X Li, L Chen, Y Li, ...
2022 USENIX Annual Technical Conference (USENIX ATC 22), 673-688, 2022
2022
基于 CUPTI 接口的典型 GPU 程序负载特征分析
郑祯, 翟季冬, 李焱, 陈文光
计算机研究与发展 53 (6), 1249-1262, 2016
2016
Journal: Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, 2020
K Wu, I Peng, J Ren, D Li
The system can't perform the operation now. Try again later.
Articles 1–18