Follow
Andrea Tacchetti
Title
Cited by
Cited by
Year
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
39262018
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
21832023
Gemma: Open models based on gemini research and technology
G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ...
arXiv preprint arXiv:2403.08295, 2024
7232024
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
6842024
Visual interaction networks: Learning a physics simulator from video
N Watters, D Zoran, T Weber, P Battaglia, R Pascanu, A Tacchetti
Advances in neural information processing systems 30, 2017
4222017
Relational inductive biases, deep learning, and graph networks. arXiv 2018
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
2212018
Unsupervised learning of invariant representations
F Anselmi, JZ Leibo, L Rosasco, J Mutch, A Tacchetti, T Poggio
Theoretical Computer Science 633, 112-121, 2016
1502016
Relational forward models for multi-agent learning
A Tacchetti, HF Song, PAM Mediano, V Zambaldi, NC Rabinowitz, ...
arXiv preprint arXiv:1809.11044, 2018
902018
Unsupervised learning of invariant representations in hierarchical architectures
F Anselmi, JZ Leibo, L Rosasco, J Mutch, A Tacchetti, T Poggio
arXiv preprint arXiv:1311.4158, 2013
862013
Human-centred mechanism design with Democratic AI
R Koster, J Balaguer, A Tacchetti, A Weinstein, T Zhu, O Hauser, ...
Nature Human Behavior 6, 1398–1407, 2022
842022
Learning to play no-press diplomacy with best response policy iteration
T Anthony, T Eccles, A Tacchetti, J Kramár, I Gemp, T Hudson, N Porcel, ...
Advances in Neural Information Processing Systems 33, 17987-18003, 2020
572020
GURLS: A Least Squares Library for Supervised Learning
A Tacchetti, P Mallapragada, M Santoro, R Rosasco
Journal of Machine Learning Research 14, 3201-3205, 2013
572013
Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy
J Kramár, T Eccles, I Gemp, A Tacchetti, KR McKee, M Malinowski, ...
Nature Communications 13 (1), 7214, 2022
492022
Invariant recognition shapes neural representations of visual input
A Tacchetti, L Isik, TA Poggio
Annual review of vision science 4 (1), 403-422, 2018
462018
Fast, invariant representation for human action in the visual system
L Isik, A Tacchetti, T Poggio
Journal of Neurophysiology 119 (2), 631-640, 2018
452018
The computational magic of the ventral stream: sketch of a theory (and why some deep architectures work).
T Poggio, J Mutch, J Leibo, L Rosasco, A Tacchetti
422013
A neural architecture for designing truthful and efficient auctions
A Tacchetti, DJ Strouse, M Garnelo, T Graepel, Y Bachrach
arXiv preprint arXiv:1907.05181 3 (3.6), 4, 2019
39*2019
GURLS: a toolbox for large scale multiclass learning
A Tacchetti, P Mallapragada, M Santoro, L Rosasco
NIPS 2011 workshop on parallel and large-scale machine learning. http://cbcl …, 2011
30*2011
Invariant recognition drives neural representations of action sequences
A Tacchetti, L Isik, T Poggio
PLoS computational biology 13 (12), e1005859, 2017
26*2017
Magic materials: a theory of deep hierarchical architectures for learning sensory representations
F Anselmi, JZ Leibo, L Rosasco, J Mutch, A Tacchetti, T Poggio
CBCL paper 16, 2013
232013
The system can't perform the operation now. Try again later.
Articles 1–20