Follow
Konstantinos P. Prokopidis
Title
Cited by
Cited by
Year
A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures
KP Prokopidis, DC Zografopoulos
Journal of lightwave technology 31 (15), 2467-2476, 2013
572013
An FDTD algorithm for wave propagation in dispersive media using higher-order schemes
KP Prokopidis, EP Kosmidou, TD Tsiboukis
Journal of Electromagnetic Waves and Applications 18 (9), 1171-1194, 2004
502004
Numerical modeling of an indoor wireless environment for the performance evaluation of WLAN systems
TT Zygiridis, EP Kosmidou, KP Prokopidis, NV Kantartzis, ...
IEEE Transactions on Magnetics 42 (4), 839-842, 2006
292006
Investigation of the Stability of ADE-FDTD Methods for Modified Lorentz Media
KP Prokopidis, DC Zografopoulos
IEEE Microwave and Wireless Component Letters 24 (10), 659-661, 2014
272014
Higher-order FDTD (2, 4) scheme for accurate simulations in lossy dielectrics
KP Prokopidis, TD Tsiboukis
Electronics Letters 39 (11), 835-836, 2003
262003
Modeling of ground-penetrating radar for detecting buried objects in dispersive soils
KP Prokopidis, TD Tsiboukis
Applied Computational Electromagnetics Society Journal 22 (2), 287, 2007
202007
Rigorous broadband investigation of liquid-crystal plasmonic structures using finite-difference time-domain dispersive-anisotropic models
KP Prokopidis, DC Zografopoulos, EE Kriezis
JOSA B 30 (10), 2722-2730, 2013
152013
On the development of efficient FDTD‐PML formulations for general dispersive media
KP Prokopidis
International Journal of Numerical Modelling: Electronic Networks, Devices …, 2008
152008
Efficient FDTD algorithms for dispersive Drude‐critical points media based on bilinear z‐transform
KP Prokopidis, DC Zografopoulos
Electronics Letters 49 (8), 534-536, 2013
142013
An ADI-FDTD Formulation With Modified Lorentz Dispersion for the Study of Plasmonic Structures
D Zografopoulos, K Prokopidis
IEEE Photon. Techn. Lett 26 (22), 2267-2270, 2014
13*2014
Physical interpretation of a modified Lorentz dielectric function for metals based on the Lorentz–Dirac force
K Prokopidis, C Kalialakis
Applied Physics B 117, 25-32, 2014
132014
Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications
DC Zografopoulos, KP Prokopidis, R Dąbrowski, R Beccherelli
Optical Materials Express 4 (3), 449-457, 2014
112014
FDTD algorithm for microstrip antennas with lossy substrates using higher order schemes
K Prokopidis, T Tsiboukis
Electromagnetics 24 (5), 301-315, 2004
102004
Modeling plasmonic structures using LOD-FDTD methods with accurate dispersion models of metals at optical wavelengths
KP Prokopidis, DC Zografopoulos
Journal of Lightwave Technology 35 (2), 193-200, 2017
92017
One-step leapfrog ADI-FDTD method using the complex-conjugate pole-residue pairs dispersion model
KP Prokopidis, DC Zografopoulos
IEEE Microwave and Wireless Components Letters 28 (12), 1068-1070, 2018
82018
Time-domain numerical scheme based on low-order partial-fraction models for the broadband study of frequency-dispersive liquid crystals
KP Prokopidis, DC Zografopoulos
JOSA B 33 (4), 622-629, 2016
72016
The effect of substrate dispersion on the operation of square microstrip antennas
KP Prokopidis, TD Tsiboukis
IEEE transactions on magnetics 42 (4), 603-606, 2006
72006
Performance optimization of the PML absorber in lossy media via closed-form expressions of the reflection coefficient
KP Prokopidis, NV Kantartzis, TD Tsiboukis
IEEE transactions on magnetics 39 (3), 1234-1237, 2003
72003
Transparent nanoprobes in integrated plasmonic circuits based on plasmonic cloaking
DC Zografopoulos, KP Prokopidis
Physical Review Applied 2 (6), 064009, 2014
52014
Time-Domain Studies of General Dispersive Anisotropic Media by the Complex-Conjugate Pole–Residue Pairs Model
KP Prokopidis, DC Zografopoulos
Applied Sciences 11 (9), 3844, 2021
42021
The system can't perform the operation now. Try again later.
Articles 1–20