Follow
Jacopo De Stefani
Jacopo De Stefani
Lecturer @ TUDelft
Verified email at tudelft.nl - Homepage
Title
Cited by
Cited by
Year
Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies.
J De Stefani, O Caelen, D Hattab, G Bontempi
MIDAS@ PKDD/ECML, 17-28, 2017
152017
Batch and incremental dynamic factor machine learning for multivariate and multi-step-ahead forecasting
J De Stefani, YA Le Borgne, O Caelen, D Hattab, G Bontempi
International Journal of Data Science and Analytics 7 (4), 311-329, 2019
142019
A dynamic factor machine learning method for multi-variate and multi-step-ahead forecasting
G Bontempi, YA Le Borgne, J De Stefani
2017 IEEE International Conference on Data Science and Advanced Analyticsá…, 2017
112017
DAFT-E: feature-based multivariate and multi-step-ahead wind power forecasting
F De Caro, J De Stefani, A Vaccaro, G Bontempi
IEEE Transactions on Sustainable Energy 13 (2), 1199-1209, 2021
82021
Robust assessment of short-term wind power forecasting models on multiple time horizons
F De Caro, J De Stefani, G Bontempi, A Vaccaro, D Villacci
Technology and Economics of Smart Grids and Sustainable Energy 5, 1-15, 2020
82020
Does automl outperform naive forecasting?
GM Paldino, J De Stefani, F De Caro, G Bontempi
Engineering proceedings 5 (1), 36, 2021
72021
Factor-based framework for multivariate and multi-step-ahead forecasting of large scale time series
J De Stefani, G Bontempi
Frontiers in big Data, 75, 2021
52021
A digital twin approach for improving estimation accuracy in dynamic thermal rating of transmission lines
GM Paldino, F De Caro, J De Stefani, A Vaccaro, D Villacci, G Bontempi
Energies 15 (6), 2254, 2022
42022
A multivariate and multi-step ahead machine learning approach to traditional and cryptocurrencies volatility forecasting
J De Stefani, O Caelen, D Hattab, YA Le Borgne, G Bontempi
ECML PKDD 2018 Workshops: MIDAS 2018 and PAP 2018, Dublin, Irelandá…, 2019
42019
System and Method for Managing Risks in a Process
J De Stefani, G Bontempi, O Caelen, D Hattab
12019
Towards multivariate multi-step-ahead time series forecasting: A machine learning perspective
J De Stefani
UniversitÚ libre de Bruxelles, 2022
2022
Multi-step-ahead prediction of volatility proxies
J De Stefani, G Bontempi, O Caelen, D Hattab
Benelearn 2017 1 (Proceedings), 105-107, 2017
2017
Spatial allocation in swarm robotics
J De Stefani
Italy, 2015
2015
SPECIAL SECTION ON ADVANCES IN RENEWABLE ENERGY FORECASTING: PREDICTABILITY, BUSINESS MODELS AND APPLICATIONS IN THE POWER INDUSTRY
RJ Bessa, P Pinson, G Kariniotakis, D Srinivasan, C Smith, N Amjady, ...
The system can't perform the operation now. Try again later.
Articles 1–14