Guaranteed lower eigenvalue bounds for the biharmonic equation C Carstensen, D Gallistl Numerische Mathematik 126 (1), 33-51, 2014 | 97 | 2014 |
Stable multiscale Petrov–Galerkin finite element method for high frequency acoustic scattering D Gallistl, D Peterseim Computer Methods in Applied Mechanics and Engineering 295, 1-17, 2015 | 78 | 2015 |
Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations DL Brown, D Gallistl, D Peterseim Meshfree methods for partial differential equations VIII, 85-115, 2017 | 65 | 2017 |
Morley finite element method for the eigenvalues of the biharmonic operator D Gallistl IMA Journal of Numerical Analysis 35 (4), 1779-1811, 2015 | 56 | 2015 |
Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems C Carstensen, D Gallistl, M Schedensack Mathematics of Computation 84 (293), 1061-1087, 2015 | 45 | 2015 |
Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients D Gallistl SIAM Journal on Numerical Analysis 55 (2), 737-757, 2017 | 42 | 2017 |
Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form D Boffi, D Gallistl, F Gardini, L Gastaldi Mathematics of Computation 86 (307), 2213-2237, 2017 | 37 | 2017 |
Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization D Gallistl, D Peterseim Multiscale Modeling & Simulation 15 (4), 1530-1552, 2017 | 35* | 2017 |
Numerical homogenization of H (curl)-problems D Gallistl, P Henning, B Verfürth SIAM journal on numerical analysis 56 (3), 1570-1596, 2018 | 32 | 2018 |
An optimal adaptive FEM for eigenvalue clusters D Gallistl Numerische Mathematik 130 (3), 467-496, 2015 | 32 | 2015 |
A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes C Carstensen, D Gallistl, J Hu Computers & Mathematics with Applications 68 (12), 2167-2181, 2014 | 32 | 2014 |
Stable splitting of polyharmonic operators by generalized Stokes systems D Gallistl Mathematics of Computation 86 (308), 2555-2577, 2017 | 30 | 2017 |
A remark on newest vertex bisection in any space dimension D Gallistl, M Schedensack, RP Stevenson Computational methods in applied mathematics 14 (3), 317-320, 2014 | 29 | 2014 |
Discrete Reliability for Crouzeix--Raviart FEMs C Carstensen, D Gallistl, M Schedensack SIAM Journal on Numerical Analysis 51 (5), 2935-2955, 2013 | 29 | 2013 |
Quasi-optimal adaptive pseudostress approximation of the Stokes equations C Carstensen, D Gallistl, M Schedensack SIAM Journal on Numerical Analysis 51 (3), 1715-1734, 2013 | 29 | 2013 |
Low-order dPG-FEM for an elliptic PDE C Carstensen, D Gallistl, F Hellwig, L Weggler Computers & Mathematics with Applications 68 (11), 1503-1512, 2014 | 28 | 2014 |
Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers T Chaumont-Frelet, D Gallistl, S Nicaise, J Tomezyk Communications in Mathematical Sciences 20 (1), 1-52, 2022 | 25* | 2022 |
Mixed Finite Element Approximation of the Hamilton--Jacobi--Bellman Equation with Cordes Coefficients D Gallistl, E Suli SIAM journal on numerical analysis 57 (2), 592-614, 2019 | 22 | 2019 |
Numerical approximation of planar oblique derivative problems in nondivergence form D Gallistl Mathematics of computation 88 (317), 1091-1119, 2019 | 20 | 2019 |
Justification of the saturation assumption C Carstensen, D Gallistl, J Gedicke Numerische Mathematik 134, 1-25, 2016 | 19 | 2016 |