Towards a rigorous science of interpretable machine learning F Doshi-Velez, B Kim arXiv preprint arXiv:1702.08608, 2017 | 3118 | 2017 |
Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients A Ross, F Doshi-Velez Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 586 | 2018 |
Do no harm: a roadmap for responsible machine learning for health care J Wiens, S Saria, M Sendak, M Ghassemi, VX Liu, F Doshi-Velez, K Jung, ... Nature medicine 25 (9), 1337-1340, 2019 | 478 | 2019 |
Right for the right reasons: Training differentiable models by constraining their explanations AS Ross, MC Hughes, F Doshi-Velez arXiv preprint arXiv:1703.03717, 2017 | 467 | 2017 |
Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis F Doshi-Velez, Y Ge, I Kohane Pediatrics 133 (1), e54-e63, 2014 | 453 | 2014 |
Accountability of AI under the law: The role of explanation F Doshi-Velez, M Kortz, R Budish, C Bavitz, S Gershman, D O'Brien, ... arXiv preprint arXiv:1711.01134, 2017 | 407 | 2017 |
Guidelines for reinforcement learning in healthcare O Gottesman, F Johansson, M Komorowski, A Faisal, D Sontag, ... Nature medicine 25 (1), 16-18, 2019 | 333 | 2019 |
Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning S Depeweg, JM Hernandez-Lobato, F Doshi-Velez, S Udluft International Conference on Machine Learning, 1184-1193, 2018 | 276 | 2018 |
Unfolding physiological state: Mortality modelling in intensive care units M Ghassemi, T Naumann, F Doshi-Velez, N Brimmer, R Joshi, ... Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014 | 263 | 2014 |
A bayesian framework for learning rule sets for interpretable classification T Wang, C Rudin, F Doshi-Velez, Y Liu, E Klampfl, P MacNeille The Journal of Machine Learning Research 18 (1), 2357-2393, 2017 | 255 | 2017 |
Beyond sparsity: Tree regularization of deep models for interpretability M Wu, M Hughes, S Parbhoo, M Zazzi, V Roth, F Doshi-Velez Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 243 | 2018 |
How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation M Narayanan, E Chen, J He, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1802.00682, 2018 | 218 | 2018 |
A Bayesian nonparametric approach to modeling motion patterns J Joseph, F Doshi-Velez, AS Huang, N Roy Autonomous Robots 31, 383-400, 2011 | 189 | 2011 |
A Bayesian nonparametric approach to modeling motion patterns J Joseph, F Doshi-Velez, AS Huang, N Roy Autonomous Robots 31, 383-400, 2011 | 189 | 2011 |
The myth of generalisability in clinical research and machine learning in health care J Futoma, M Simons, T Panch, F Doshi-Velez, LA Celi The Lancet Digital Health 2 (9), e489-e492, 2020 | 184 | 2020 |
Variational inference for the Indian buffet process F Doshi, K Miller, J Van Gael, YW Teh Artificial Intelligence and Statistics, 137-144, 2009 | 179 | 2009 |
Learning and policy search in stochastic dynamical systems with bayesian neural networks S Depeweg, JM Hernández-Lobato, F Doshi-Velez, S Udluft arXiv preprint arXiv:1605.07127, 2016 | 166 | 2016 |
An evaluation of the human-interpretability of explanation I Lage, E Chen, J He, M Narayanan, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1902.00006, 2019 | 157 | 2019 |
The infinite partially observable Markov decision process F Doshi-Velez Advances in neural information processing systems 22, 2009 | 150 | 2009 |
The infinite partially observable Markov decision process F Doshi-Velez Advances in neural information processing systems 22, 2009 | 150 | 2009 |