A framework for interdomain and multioutput Gaussian processes M Van der Wilk, V Dutordoir, ST John, A Artemev, V Adam, J Hensman arXiv preprint arXiv:2003.01115, 2020 | 106 | 2020 |
Sparse Gaussian processes with spherical harmonic features V Dutordoir, N Durrande, J Hensman International Conference on Machine Learning, 2793-2802, 2020 | 72 | 2020 |
Gaussian process conditional density estimation V Dutordoir, H Salimbeni, J Hensman, M Deisenroth Advances in Neural Information Processing Systems, NeurIPS, 2385-2395, 2018 | 62 | 2018 |
Deep Gaussian Processes with Importance-Weighted Variational Inference H Salimbeni, V Dutordoir, J Hensman, MP Deisenroth International Conference on Machine Learning, ICML, 2019 | 58 | 2019 |
A tutorial on sparse Gaussian processes and variational inference F Leibfried, V Dutordoir, ST John, N Durrande arXiv preprint arXiv:2012.13962, 2020 | 51 | 2020 |
Bayesian image classification with deep convolutional Gaussian processes V Dutordoir, M Wilk, A Artemev, J Hensman International Conference on Artificial Intelligence and Statistics, 1529-1539, 2020 | 43* | 2020 |
Scalable Thompson sampling using sparse Gaussian process models S Vakili, H Moss, A Artemev, V Dutordoir, V Picheny Advances in neural information processing systems 34, 5631-5643, 2021 | 39 | 2021 |
Neural diffusion processes V Dutordoir, A Saul, Z Ghahramani, F Simpson International Conference on Machine Learning, 8990-9012, 2023 | 36 | 2023 |
Deep neural networks as point estimates for deep Gaussian processes V Dutordoir, J Hensman, M van der Wilk, CH Ek, Z Ghahramani, ... Advances in Neural Information Processing Systems 34, 9443-9455, 2021 | 36 | 2021 |
GPflux: A library for deep Gaussian processes V Dutordoir, H Salimbeni, E Hambro, J McLeod, F Leibfried, A Artemev, ... arXiv preprint arXiv:2104.05674, 2021 | 29 | 2021 |
Deep gaussian process metamodeling of sequentially sampled non-stationary response surfaces V Dutordoir, N Knudde, J van der Herten, I Couckuyt, T Dhaene Winter Simulation Conference, 134, 2017 | 7 | 2017 |
Memory-based meta-learning on non-stationary distributions T Genewein, G Delétang, A Ruoss, LK Wenliang, E Catt, V Dutordoir, ... International conference on machine learning, 11173-11195, 2023 | 6 | 2023 |
A framework for conditional diffusion modelling with applications in motif scaffolding for protein design K Didi, F Vargas, SV Mathis, V Dutordoir, E Mathieu, UJ Komorowska, ... arXiv preprint arXiv:2312.09236, 2023 | 5 | 2023 |
Hierarchical gaussian process models for improved metamodeling N Knudde, V Dutordoir, JVD Herten, I Couckuyt, T Dhaene ACM Transactions on Modeling and Computer Simulation (TOMACS) 30 (4), 1-17, 2020 | 5 | 2020 |
A tutorial on sparse Gaussian processes and variational inference. arXiv 2020 F Leibfried, V Dutordoir, S John, N Durrande arXiv preprint arXiv:2012.13962, 0 | 5 | |
Geometric neural diffusion processes E Mathieu, V Dutordoir, M Hutchinson, V De Bortoli, YW Teh, R Turner Advances in Neural Information Processing Systems 36, 2024 | 4 | 2024 |
DEFT: Efficient Finetuning of Conditional Diffusion Models by Learning the Generalised -transform A Denker, F Vargas, S Padhy, K Didi, S Mathis, V Dutordoir, R Barbano, ... arXiv preprint arXiv:2406.01781, 2024 | 3 | 2024 |
Automatic tuning of stochastic gradient descent with Bayesian optimisation V Picheny, V Dutordoir, A Artemev, N Durrande Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021 | 2 | 2021 |
Method and system for classification of data J Hensman, M VAN DER WILK, V Dutordoir US Patent 10,733,483, 2020 | 2 | 2020 |
Spherical inducing features for orthogonally-decoupled gaussian processes LC Tiao, V Dutordoir, V Picheny International Conference on Machine Learning, 34143-34160, 2023 | 1 | 2023 |